Notice
Recent Posts
Recent Comments
05-05 03:33
Archives
관리 메뉴

develop myself

quantile(분위수) vs quartile(사분위수) vs percentile(백분위수) 본문

DataScience/통계분석

quantile(분위수) vs quartile(사분위수) vs percentile(백분위수)

insightous 2023. 1. 30. 17:17

definition

Here’s a simple definition of each:

  • Percentiles: Range from 0 to 100.
  • Quartiles: Range from 0 to 4.
  • Quantiles: Range from any value to any other value.

Note that percentiles and quartiles are simply types of quantiles.

(percentiles과 quartiles은 quantiles의 종류들이다.)

Some types of quantiles even have specific names, including:

  • 4-quantiles are called quartiles.
  • 5-quantiles are called quintiles.
  • 8-quantiles are called octiles.
  • 10-quantiles are called deciles.
  • 100-quantiles are called percentiles.

 

Note that percentiles and quartiles share the following relationship:

  • 0 percentile = 0 quartile (also called the minimum)
  • 25th percentile = 1st quartile
  • 50th percentile = 2nd quartile (also called the median)
  • 75th percentile = 3rd quartile
  • 100th percentile = 4th quartile (also called the maximum)

quartiles_percentiles

 

pandas.quantile

pandas.DataFrame.quantile()

wine['alcohol'].quantile([0.25,0.75])

pandas의 quantile은 0 ~ 1 사이 범위를 파라미터로 갖는다.

numpy.quantile

numpy.quantile()

np.quantile(wine['alcohol'],[0.25,0.75])

numpy의 quantile은 0 ~ 1 사이 범위를 파라미터로 갖는다.

numpy.percentile

numpy.percentile()

np.percentile(wine['alcohol'],[25,75])

numpy의 percentile은 0 ~ 100 사이 범위를 파라미터로 갖는다.


출처

- https://www.statology.org/percentile-vs-quartile-vs-quantile/

- https://aprendeconalf.es/en/teaching/statistics/manual/descriptive-statistics/

 

 

'DataScience > 통계분석' 카테고리의 다른 글

추정(estimation) 이론  (0) 2023.01.31
유의수준 $\alpha$의 이해  (0) 2023.01.27
pdf, cdf, ppf (SciPy의 method 활용)  (0) 2023.01.27
Comments